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Abstract


In this paper, we demonstrate that RCL scales 
sublinearly with dataset size and linearly with 
compute. We also indicate how RCL both differs 
from transformer architecture and promises better 
performance. RCL does not employ neural net-
works; unlike deep learning, RCL training time is 
a function of only dataset size and compute, and 
RCL model size is a function of dataset size. Ad-
ditionally, we demonstrate that RCL continues to 
scale linearly whether or not we control for en-
tropy.  Finally, by employing a shared-nothing 2

architecture and running on CPU, RCL scales 
without theoretical limit as 1) dataset size increas-
es or 2) processes are distributed across more ma-
chines. 


1. Introduction


In February 2022, we introduced a new approach 
to machine learning called Random Contrast 
Learning (RCL). We have focused primarily on 
applying RCL to language because the vast major-
ity of reasoning tasks can be expressed and evalu-
ated in language.  Our research continues to 3

demonstrate its general applicability to fields in 
and beyond natural language processing. Our 
most recent tests compare a Keras-framework 
deep learning neural network to RCL. RCL trains 
81,343x faster, runs inference 82x faster, and pro-
duces a model that is 150x smaller, and achieves 
99% recall.


The following sections illustrate the behavior of 
RCL as 1) dataset size increases and entropy is 

constant, 2) dataset size increases and entropy is 
dynamic, and 3) dataset size is constant while 
thread count increases. We then compare neural 
network scaling behavior with RCL.


1.2 Dataset


OpenAI’s GPT-J training dataset (The Pile) is the 
current unofficial standard for training open 
source large language models. Thus far, we have 
used the 278MB EU Document English subset  to 4

demonstrate RCL scaling behavior.


1.3 CPU Hardware


RCL runs faster on CPU than GPU. The following 
RCL tests took place on a physical machine with 
2x32 Cores 2.3 GHz and 128 GB RAM Non-GPU 
enabled.


1.4 Method


In each experiment, models were built at least 5 
times. Maximum and minimum times were re-
moved from each set to avoid skew by outliers. 
The graphs below exhibit the average metrics of 
the remaining models. Additionally, we used 1MB 
to 278MB datasets to demonstrate scaling behav-
ior across two orders of magnitude.


2. Experiments


Increasing Dataset Size with Constant Entropy


Given a domain in which most distinct tokens are 
known (e.g. words in a language), data from that 
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 RCL has theoretical implications for entropy in general. Given a domain has a finite number of distinct tokens, RCL 2

scales linearly to sublinearly at scale. 
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domain will approach constant entropy as dataset 
size increases. RCL treats distinctive word com-
binations as tokens. In the training of RCL mod-
els, as entropy understood this way approaches 
constant, training time also approaches a constant 
value.





In the experiment illustrated in Figure 1, we be-
gan with a 1MB sample of the EU Document 
dataset, duplicated it up to 10x, and trained a new 
model at each 1MB interval. The training time 
remained constant as dataset size increased.



Increasing Dataset Size with Dynamic Entropy





Next, we increased dataset size in 10% intervals 
of the EU Document dataset from 27.8MB to 
278.3MB. Though entropy increased at each in-
terval, training time increased sublinearly. 



Increasing Thread Count





We then increased thread count in 100 thread in-
crements. The graphs show that training speed 
improves as we distribute RCL processes across 
threads.


Neural Network Scaling Behavior


In deep learning, training time and inference time 
are independent variables and not functions of 
dataset size and entropy. Instead, neural scaling 
laws are far more complex. In Figures 5 and 6, we 
illustrate why one characteristic of neural net-
works — neurons per layer — poses problems at 
scale. 











We increased the number of neurons per layer in 
the neural network. For each new neuron per lay-
er, training time and inference time both increased 
exponentially.
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3. Theoretical Implications


Inference time for a neural network increases ex-
ponentially as the number of neurons per layer 
increases. This is because most neurons of each 
layer connect to all neurons in the adjacent layers. 
In contrast, the nodes of an RCL model only ever 
have one parent. This means that inference time 
will scale sublinearly as model size increases. 
Subsequently, though our current experiments 
show 82x improved inference speed at small 
scales, RCL models likely run at orders of magni-
tude faster inference speeds when compared to 
neural models at larger scales.


4. Conclusion


RCL reduces the number of independent variables 
in the machine learning process: The approach 
employs a CPU-based shared-nothing architecture 
that scales sublinearly with dataset size and lin-
early with compute, without theoretical limits for 
either. Its unique approach minimizes the impact 
of entropy and maintains close to constant infer-
ence speed at scale. RCL outperforms neural net-
works in training speed, inference speed, model 
size, and recall and promises orders of magnitude 
improved performance for state-of-the-art ma-
chine learning systems.
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